Electrochemically Promoted Nickel-Catalyzed Carbon−Sulfur Bond Formation

Yang Wang, Lingling Deng, Xiaochen Wang, Zhengguang Wu, Yi Wang,* and Yi Pan

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Supporting Information

ABSTRACT: This work describes a nickel-catalyzed Ullmann-type thiolation of aryl iodides under mild electrochemical conditions. The simple undivided cell with graphene/nickel foam electrode setups offers excellent substrate tolerance, affording aryl and alkyl sulfides in good chemical yields. Furthermore, the mechanism for this electrochemical cross-coupling reaction has been investigated by cyclic voltammetry.

KEYWORDS: electrochemistry, nickel, Ullmann coupling, C−S bond, metal catalysis, thiolation, arylation

The classical Ullmann-type coupling reactions have been developed for over a century for C−N, C−O, and C−S bond formations. The scope of the original copper-catalyzed biaryl coupling was limited to electron-deficient aryl halides and requires harsh reaction conditions. Modern variants of the Ullman reaction employing palladium and nickel have widened the substrate scope and rendered conditions milder, although these efforts were plagued by several drawbacks. The cross-coupling of thiols with aryl halides generally rely on the conversion of the thiols to their corresponding thiolates by means of transition-metal catalysis. The strong coordination of thiolates to metals often leads to catalyst deactivation and displays low efficiencies. Thus, Ullmann thiolation is considered more challenging in contrast to amination and etherification, which requires high catalyst loading, specific ligand, excessive heating, and strong base to facilitate this transformation (Scheme 1). Recent development using photoinduced thiol radicals as sulfur source could avoid the problem of catalyst deactivation.

Table 1. Optimization of the Reaction Conditions

Table 1. Optimization of the Reaction Conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>[Ni] catalyst</th>
<th>ligand</th>
<th>solvent</th>
<th>electrolyte</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NiCl₂</td>
<td>L1</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>9%</td>
</tr>
<tr>
<td>2</td>
<td>NiBr₂</td>
<td>L1</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>NiI₂</td>
<td>L1</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>76%</td>
</tr>
<tr>
<td>4</td>
<td>Ni(acac)₂</td>
<td>L1</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>59%</td>
</tr>
<tr>
<td>5</td>
<td>NiCl₂-glyme</td>
<td>L1</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>91%</td>
</tr>
<tr>
<td>6</td>
<td>NiCl₂-glyme</td>
<td>L1</td>
<td>DMA</td>
<td>n-Bu₄NBF₄ (4 equiv)</td>
<td>21%</td>
</tr>
<tr>
<td>7</td>
<td>NiCl₂-glyme</td>
<td>L2</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>87%</td>
</tr>
<tr>
<td>8</td>
<td>NiCl₂-glyme</td>
<td>L3</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>51%</td>
</tr>
<tr>
<td>9</td>
<td>NiCl₂-glyme</td>
<td>L4</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>trace</td>
</tr>
<tr>
<td>10</td>
<td>NiCl₂-glyme</td>
<td>L5</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>trace</td>
</tr>
<tr>
<td>11</td>
<td>NiCl₂-glyme</td>
<td>L6</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>20%</td>
</tr>
<tr>
<td>12</td>
<td>NiCl₂-glyme</td>
<td>L1</td>
<td>MeCN</td>
<td>LiBr (4 equiv)</td>
<td>21%</td>
</tr>
<tr>
<td>13</td>
<td>NiCl₂-glyme</td>
<td>L1</td>
<td>DMA</td>
<td>LiBr (1 equiv)</td>
<td>35%</td>
</tr>
</tbody>
</table>

Received: November 18, 2018
Revised: January 22, 2019

© XXXX American Chemical Society

DOI: 10.1021/acscatal.8b04633
ACS Catal. 2019, 9, 1630−1634
poison, although restricted substrate scope was displayed and heteroaryl thiols were not reported. Presumably, strong oxidizing iridium(III) photocatalyst might interfere with the generation of low-valent nickel species and hindered reductive elimination step.5 The advances of electrochemical cross-coupling process have drawn great attention, and many groups have joined this arena. The redox-efficiency, innate scalability and sustainability6 of such process prompted the investigation of electrochemical dehydrogenative cross-coupling reactions for the C–C,7 C–O,8 C–N,9 and C–S10 bond formations. However, in a majority of electrochemical dehydrogenative cross-coupling, the substrates were limited to electron-rich (hetero)arenes with regioselctive and chemoselective drawbacks.11 We speculated that an electrochemically enabled Ullmann-type cross-coupling of aryl halides with X-H (X = N, O, S) donors could offer a complementary solution to access synthetically and medicinally useful aryl amines, esters, and thioesters. To our surprise, despite the potential utility of such transformation, only one example of electrochemical Buchwald–Hartwig amination and esterification has been described previously.12 No electrochemically enabled Ullmann-type thiolation has been reported (Scheme 1). It is noteworthy that a nickel-catalyzed electrochemical C–H amination has also been reported by Lutz Ackermann group recently.9f The proposition of Ullmann thiolation protocol under electrochemical conditions might be realized through careful redox manipulation of the nickel catalyst as each electrochemical process seamlessly combines concurrent anodic oxidations with cathodic reductions.13 Thus, various oxidation states of nickel complexes could coexist in harmony under electrolytic conditions and precisely initiated and ceased by fine-tuning of the cell voltage.14 The use of an undivided cell is rare and challenging in this situation.15 Graphene/nickel foam electrodes were chosen in order to enhance the charge exchange.16 Thus, we carried out electrolysis experiments with a survey of nickel catalysts using \textit{p}-toluene thiol and \textit{p}-iodobenzene in LiBr/DMA solution (Table 1). These studies reveal that nickel salt and ligand is able to promote the desired cross-coupling sequence. NiCl\textsubscript{2}, NiBr\textsubscript{2}, and NiI\textsubscript{2} could afford the thiolation product in low to moderate yields (entries 1–3). We next tested Bu\textsubscript{4}NBF\textsubscript{4} as electrolyte, but just 21% yield was afforded (entry 6). A series of ligands were screened (entries 7–10). Good to excellent yields were achieved with sterically hindered groups at para position of the dipyridyl ligands (entries 5 and 7). Poor conversions were observed using L\textsubscript{4}–L\textsubscript{6} (entries 9–11). Other solvent such as MeCN provided a very poor result.

<table>
<thead>
<tr>
<th>entry</th>
<th>[Ni] catalyst</th>
<th>ligand</th>
<th>solvent</th>
<th>electrolyte</th>
<th>yieldb</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>NiCl\textsubscript{2}·glyme</td>
<td>L\textsubscript{1}</td>
<td>DMA</td>
<td>LiBr (2 equiv)</td>
<td>69%</td>
</tr>
<tr>
<td>15</td>
<td>NiCl\textsubscript{2}·glyme</td>
<td>L\textsubscript{1}</td>
<td>DMA</td>
<td>LiBr (3 equiv)</td>
<td>96%</td>
</tr>
<tr>
<td>16</td>
<td>NiCl\textsubscript{2}·glyme</td>
<td>L\textsubscript{1}</td>
<td>DMA</td>
<td>LiBr (4 equiv)</td>
<td>87%</td>
</tr>
<tr>
<td>17</td>
<td>NiCl\textsubscript{2}·glyme</td>
<td>L\textsubscript{1}</td>
<td>DMA</td>
<td>LiBr (3 equiv)</td>
<td>99%</td>
</tr>
</tbody>
</table>

aReaction conditions: 1 (0.2 mmol), 2 (0.4 mmol), solvent (4 mL) under argon atmosphere for 12 h, GFE = graphite felt electrode, FNE = foamed nickel electrode. 19F NMR yield based on 1a. ^3 V voltage. ^92% isolated yield based on 1a.

Scheme 2. Scope of Thiol Coupling Partner

aReaction conditions: (hetero)aryl iodides (0.20 mmol), thiols (0.40 mmol), [Ni] (0.02 mmol), dtbbpy (0.03 mmol), pyridine (0.4 mmol), DMA (4 mL), LiBr (0.60 mmol). bIsolated yield based on iodides.

poison, although restricted substrate scope was displayed and heteroaryl thiols were not reported. Presumably, strong oxidizing iridium(III) photocatalyst might interfere with the generation of low-valent nickel species and hindered reductive elimination step.3 The advances of electrochemical cross-coupling process have drawn great attention, and many groups have joined this arena. The redox-efficiency, innate scalability and sustainability7 of such process prompted the investigation of electrochemical dehydrogenative cross-coupling reactions for the C–C,7 C–O,8 C–N,9 and C–S10 bond formations. However, in a majority of electrochemical dehydrogenative cross-coupling, the substrates were limited to electron-rich (hetero)arenes with regioselctive and chemoselective drawbacks.11 We speculated that a electrochemically enabled Ullmann-type cross-coupling of aryl halides with X-H (X = N, O, S) donors could offer a complementary solution to access synthetically and medicinally useful aryl amines, esters, and thioesters. To our surprise, despite the potential utility of such transformation, only one example of electrochemical Buchwald–Hartwig amination and esterification has been described previously.12 No electrochemically enabled Ullmann-type thiolation has been reported (Scheme 1). It is noteworthy that a nickel-catalyzed electrochemical C–H amination has also been reported by Lutz Ackermann group recently.9f The proposition of Ullmann thiolation protocol under electrochemical conditions might be realized through careful redox manipulation of the nickel catalyst as each electrochemical process seamlessly combines concurrent anodic oxidations with cathodic reductions.13 Thus, various oxidation states of nickel complexes could coexist in harmony under electrolytic conditions and precisely initiated and ceased by fine-tuning of the cell voltage.14 The use of an undivided cell is rare and challenging in this situation.15 Graphene/nickel foam electrodes were chosen in order to enhance the charge exchange.16 Thus, we carried out electrolysis experiments with a survey of nickel catalysts using \textit{p}-toluene thiol and \textit{p}-iodobenzene in LiBr/DMA solution (Table 1). These studies reveal that nickel salt and ligand is able to promote the desired cross-coupling sequence. NiCl\textsubscript{2}, NiBr\textsubscript{2}, and NiI\textsubscript{2} could afford the thiolation product in low to moderate yields (entries 1–3). We next tested Bu\textsubscript{4}NBF\textsubscript{4} as electrolyte, but just 21% yield was afforded (entry 6). A series of ligands were screened (entries 7–10). Good to excellent yields were achieved with sterically hindered groups at para position of the dipyridyl ligands (entries 5 and 7). Poor conversions were observed using L\textsubscript{4}–L\textsubscript{6} (entries 9–11). Other solvent such as MeCN provided a very poor result.

Scheme 3. Scope of (Hetero)aryl Iodide Coupling Partner

aReaction conditions: (hetero)aryl iodides (0.2 mmol), thiols (0.4 mmol), [Ni] (0.02 mmol), dtbbpy (0.03 mmol), pyridine (0.4 mmol), DMA (4 mL), LiBr (0.60 mmol). bIsolated yield based on iodides.

Made from alkyl bromide.
The ratio of the added electrolyte has a significant influence on the yields (entries 13–16). The highest isolated yield was achieved with 3 equiv of LiBr at $E_{\text{cell}} = 3\text{V}$ (entry 17). Under the optimized conditions, various thiols reacted smoothly with aryl iodides $1a$ and $1b$ to provide sulfides $3a$–$3q$ in good to excellent yields (Scheme 2). Notably, alkyl ($3d$, $3r$–$3v$), heteroaryls ($3w$ and $3x$), and ester ($3e$) bearing thiols, which have proven to be challenging substrates using other cross-coupling procedures, also underwent highly selective reactions under the present conditions.

The scope of the aryl iodide coupling partner was also explored. Using conditions identical to those employed in Scheme 2, a range of aryl iodides underwent radical thiolation with p-methyl or methoxyl thiophenol to provide sulfides (Scheme 3). Aryls bearing ketone ($4e$), ester ($4f$), and borane ($4g$) functionalities were tolerated in this electrochemically enabled radical process. Heteroarenes including thiophene ($4l$), pyridine ($4m$), furan ($4n$), carbazole ($4o$), and benzopyrazole pyridine ($4p$) substituted iodides also furnished the corresponding products in high efficiency. Notably, linear ester could also be well-adopted in this nickel-catalytic system ($4q$).

Further elaboration of this electrochemical coupling sequence is presented in Figure 1. The scalability of this reaction was demonstrated through the cross-coupling of p-iodobenzonitrile and 4-methoxybenzenethiol on gram scale under the standard conditions with 100 mL undivided cell setup (Figure 1A). Electrochemical cross-coupling can also derivatize thiol motifs in bioactive molecules such as iodinated estrone in 63% yield (Figure 1B). In the radical-scavenging experiment, by adding 3 equiv of TEMPO, the cross-coupling product was completely suppressed, and the homocoupling product was observed (Figure C-i). Further trapping of thiol radical with diphenylacetylene under the same conditions furnished the thiolated olefin in 52% yield, which verified the radical pathway of this process (Figure C-ii). No evidence indicated the presence of bromine radicals in the reaction mixture (see Supporting Information). Therefore, it is likely that thiols are directly oxidized to thiol radicals at the anode. To elucidate the reaction mechanism, cyclic voltammetry experiments were performed at the concentration of 10^{-4} M in MeCN with n-Bu$_4$NPF$_6$ as electrolyte (0.2 M) using glassy carbon working electrode, Pt wire counter electrode, and SCE reference electrode with scan rate at 0.2 V·s$^{-1}$. First, we compared the redox potentials of all the possible reactive intermediates. As shown in Figure 1D-i, iodide $1b$ and Ni(II) catalyst displayed relatively high oxidative potentials (2.17 and 1.03 V vs SCE, respectively). Thiol $2b$ exhibited multiple irreversible oxidative waves from 0.88 V vs SCE. By adding pyridine to $2b$, only one oxidative wave showed at 1.04 V, indicating that pyridine could stabilize the oxidation process of thiols. These anodic events substantiated the initiation of catalytic cycle was more likely to be oxidation of $2b$ to its radical in assistance of base. In a separate voltammetric study, we measured the redox potentials of nickel complex species (Figure 1D-ii). An oxidative wave at 1.21 V was observed with the preformed Ni(0)-L, which shifted to 0.74 V on the addition of iodide $1b$ to the Ni(0) complex. These events strongly suggested that Ni(0) was the actual reactive
species and oxidative insertion of aryl iodide resulted in the formation of Ni(II) intermediate. Based on the above evidence, a plausible mechanism for this Ni-catalyzed electrochemical thiolation is proposed. As illustrated in Figure 1E, a single electron transfer (SET) oxidation of the thiol on anode produces the thiol radical cation F. Proton abstraction of F by pyridine affords a thiol radical G with aryl disulfide 7. Meanwhile, a cathodic reduction of NiCl2-dtbppy A delivers a Ni(0)-X B followed by oxidative addition of aryl haide A to generate Ar–Ni(II)-X species C, which traps the thiol radical G to deliver a Ni(III)-complex D. Finally, reductive elimination of D furnishes the cross-coupled product 3 with Ni(II)-X complex E followed by cathodic reduction to regenerate Ni(0)-X B.

In summary, a robust electrochemistry facilitated nickel-catalyzed C–S cross-coupling protocol has been developed. The protocol affords both aryl and alkyldisulfides with a wide array of functionalized aryl and heteroaryl iodosides under mild conditions. The anodic and cathodic processes synergistically harness radical-mediated nickel species of different oxidation states in an undivided cell unit. Further study on Ullmann-type thiolation is underway in our laboratory.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b04633.

Synthetic procedures and characterisation data (PDF)

AUTHOR INFORMATION

Corresponding Author
*E-mail: yiwang@njtu.edu.cn.

ORCID
Yang Wang: 0000-0002-0222-2083
Yi Wang: 0000-0002-8700-7621

Author Contributions
All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 21472082, 21402088, and 21772085) and the Fundamental Research Funds for the Central Universities (No. 020514380148).

REFERENCES

